Genetic Algorithm to Maximize a Lower-bound for System Time-to-failure with Uncertain Component Weibull Parameters
نویسندگان
چکیده
A genetic algorithm (GA) is used to solve the redundancy allocation problem when the objective is to maximize a lower percentile of the system time-to-failure distribution and the available components have random Weibull scale parameters. The GA searches the prospective solution space using an adaptive penalty to consider both feasible and infeasible solutions until converging to a feasible recommended system design. The objective function is intractable and a bi-section search is required as a function evaluator. Previously, this problem has most often been formulated to maximize system reliability instead of a lower-bound on system time-to-failure. Most system designers and users are risk-averse, and maximization of a lower percentile of the system time-to-failure distribution is a more conservative strategy (i.e. less risky) compared to maximization of the mean or median of the time-to-failure distribution. The only previous research to consider a lower percentile of system time-to-failure, also required that all component Weibull parameters are known. Those ®ndings have been extended to address problems where the Weibull shape parameter is known, or can be accurately estimated, but the scale parameter is a random variable. Results from over 90 examples indicate that the preferred system design is sensitive to the user's perceived risk. q 2002 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Failure Process Modeling with Censored Data in Accelerated Life Tests
Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...
متن کاملA Lagrangian Decomposition Algorithm for Robust Green Transportation Location Problem
In this paper, a green transportation location problem is considered with uncertain demand parameter. Increasing robustness influences the number of trucks for sending goods and products, caused consequently, increase the air pollution. In this paper, two green approaches are introduced which demand is the main uncertain parameter in both. These approaches are addressed to provide a trade-off b...
متن کاملExtending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items
In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...
متن کاملGenetic Algorithm and Simulated Annealing for Redundancy Allocation Problem with Cold-standby Strategy
This paper presents a new mathematical model for a redundancyallocation problem (RAP) withcold-standby redundancy strategy and multiple component choices.The applications of the proposed model arecommon in electrical power, transformation,telecommunication systems,etc.Manystudies have concentrated onone type of time-to-failure, butin thispaper, two components of time-to-failures which follow hy...
متن کاملParameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm
In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...
متن کامل